2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и технические параметры ротора

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Читать еще:  Устройство и характеристики модификаций хускварна

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

Ротор — что это такое

Ротор – важная составляющая многих машин и механизмов. Наиболее важной деталью, обозначаемой при помощи данного понятия, является так называемый якорь электрического двигателя, генераторов переменного тока. Равно как и колесо, изобретение и использование ротора позволили сделать человечеству огромный шаг навстречу электрификации. Более подробно о том, что такое ротор, в каких механизмах и машинах он применяется, каких видов бывает, будет рассказано в этой статье.

Определение

С точки зрения электротехники, классический ротор – это вращающееся цилиндрическое тело, имеющее следующее строение:

  • Вал из прочной инструментальной стали с как минимум двумя подшипниками, расположенными по одному в передней и задней частях;
  • Сердечники из толстых металлических пластин;
  • Намотанные на собранные из пластин сердечники катушки;
  • Коллектор или пара специальных токопроводящих колец.

Для принудительного воздушного охлаждения вращающейся очень часто с большой скоростью детали служит расположенная в одном из его торцов крыльчатка. В генераторах вращение ротору передается от турбины, соединенной с ним через общий вал, или от работающего двигателя при помощи шкива, на который одет гибкий и прочный ремень (клинно-ременная передача).

Так, основная функция ротора – это вращение относительно неподвижной части. В электротехнике такой неподвижной частью является статор. Вместе ротор и статор являются важнейшими составляющими электродвигателей и генераторов переменного тока.

Виды электромеханических устройств

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Читать еще:  Модели и технические характеристики

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения.

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость.

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Типы роторов

В зависимости от области применения и строения, роторы бывают следующих типов:

  • Фазный – якоря данного типа представляют собой совокупность намотанных на сердечник катушек, расположенных относительно друг другу под углом 1200. Концы проводов катушек выводятся к пластинам коллектора и запитываются при помощи щёточного узла.
  • Короткозамкнутый –ротор такого типа состоит из цельного цилиндра с пазами, в которые укладываются стержни из электролитической меди или алюминия. Концы таких стержней соединяются между собой кольцом. Коллектора и щеточного узла в агрегатах, оборудованных подобным якорем, не имеется.

Двигатели с фазным типом якоря отличаются большими размерами и весом, но при этом обладают прекрасным пуском и регулировкой. Агрегаты с короткозамкнутыми роторами имеют меньшие размеры, меньшую подверженность поломкам, простоту в эксплуатации.

Разобравшись в том, что такое собой представляют ротор и статор, можно получить не только полезные теоретические знания, но и практические навыки: зная устройство агрегатов, работающих на постоянном и переменном токе, можно при наличии неисправности проверить работоспособность их основных узлов, определить, виноваты ли в поломке намотка якоря, статор, щеточный или коллекторный узел.

Также ответив на вопрос «ротор что это такое» и углубившись в устройство данной детали, можно производить перемотку сгоревших обмоток самостоятельно, что, в свою очередь, является достаточно востребованной и высокооплачиваемой работой.

Видео

Устройство и технические параметры ротора

Общие сведения

Устройство пусковое роторное серии УПРФ (аналог КПУФ) предназначено для пуска асинхронных электродвигателей с фазным ротором, с током ротора от 250 до 2500 А и напряжением ротора до 1500 В. Устройство обеспечивает оптимальный (щадящий) пуск двигателей с фазным ротором. Переключение ступеней пускового резистора обеспечивается тиристорным коммутатором в функции времени.

Структура условного обозначения

  • УПРФ-Х УХЛ4: УПРФ — устройство пусковое роторное для электродвигателей с фазным ротором;
  • Х — типовой ток пускового устройства, А (250; 630; 1600;2500);
  • УХЛ4 — климатическое исполнение и категория размещения по ГОСТ 15150-69.

Условия эксплуатации

  • Высота над уровнем моря не более 1000 м.
  • Температура окружающей среды от 1 до 40°С.
  • Относительная влажность воздуха не более 80% при температуре 25°С.
  • Окружающая среда невзрывоопасная, не содержащая токопроводящей пыли, агрессивных газов и паров в концентрациях, разрушающих металл и изоляцию, при отсутствии непосредственного воздействия солнечной радиации. Содержание нетокопроводящей пыли в помещении не более 2 мг/м 3 .
  • Группа механического исполнения М3 по ГОСТ 17516.1-90.
  • Рабочее положение в пространстве вертикальное, допускается отклонение от рабочего положения не более 5° в любую сторону.
  • Степень защиты шкафа IР20 по ГОСТ 14254-96.
  • Охлаждение воздушное естественное.
  • Требования техники безопасности по ГОСТ 12.2.007.11-75 и ГОСТ 12.2.007.7-83.
  • Устройства соответствуют требованиям ОТЛ. 539.002 ТУ. ОТЛ.539.002 ТУ

Технические характеристики

Питание цепей управления, автоматики и катушки контактора осуществляется от однофазной сети переменного тока напряжением 220 В частотой 50 Гц. В отдельных случаях, оговоренных в документации, питание катушки контактора выполняется однофазным напряжением 380 В переменного тока.
Основные технические параметры приведены в таблице.
Число ступеней пускового резистора NR=4-7 (в зависимости от требований заказчика к плавности разгона). Число ступеней разгона — NR+1. Время включения каждой ступени может быть установлено с точностью 0,1 с в диапазоне от 0,1 до 99,9 с.
Примечание. Тип, количество, величина сопротивлений резисторов, время включения каждой ступени подбираются по условиям достижения оптимального режима пуска двигателя с конкретным приводным механизмом.
Гарантийный срок — 2 года со дня ввода устройств в эксплуатацию, но не более 3 лет со дня отгрузки потребителю при условии соблюдения потребителем условий эксплуатации, транспортирования и хранения.

Читать еще:  Где можно использовать

Конструкция и принцип действия

Пусковые устройства с четырьмя ступенями пускового резистора размещены в одном шкафу (рис. 1), устройства с 5-7 ступенями — в двух шкафах. В первом шкафу размещены схема управления, релейная панель, диодный мост, тиристорный коммутатор, автоматический выключатель и контактор, во втором шкафу — пусковой резистор. Исполнение шкафов с двухсторонним обслуживанием. Габаритные и установочные размеры второго шкафа зависят от количества пусковых резисторов.

Габаритные и установочные размеры пусковых устройств серии УПРФ с четырьмя ступенями пускового резистора Масса не более 380 кг
Функциональная схема пусковых устройств с четырьмя ступенями пускового резистора приведена на рис. 2.

Функциональная схема пусковых устройств серии УПРФ с четырьмя ступенями пускового резистора

Силовая схема устройств содержит мостовой диодный выпрямитель VD6-VD11, который подключается к выводам контактных колец электродвигателя. Выпрямитель нагружен на пусковой резистор, разделенный на секции R1-R4, подключенные через тиристоры VS1-VS3 к общей минусовой шине выпрямителя. По мере разгона электродвигателя тиристоры включаются поочередно, шунтируя секции пускового резистора. Включение тиристоров происходит последовательно через заранее установленные промежутки времени, которые задаются уставками реле времени (РВ). Ток в общей цепи пусковых резисторов и токи в цепях тиристоров контролируются датчиками герконовыми токовыми реле К9-К12. Включение реле времени производится по команде от первого датчика тока К9. Выходные цепи всех датчиков тока и блок-контакты шунтирующего контактора КМ18 подключены к блоку сигнализации (БС), который указывает номер включенной ступени пускового резистора и сигнализирует о конце пускового режима. Ток в управляющие цепи тиристоров поступает из формирователя тока управления (ФТУ), содержащего накопительные конденсаторы и разрядные оптронные тиристоры. В конце пуска производится шунтирование роторной обмотки контактами контактора КМ18. При включении контактора отключаются реле времени и ФТУ. Отключение контактора производится при отключении схемы управления блок-контактами высоковольтного (масляного) выключателя статора электродвигателя.
Для включения асинхронного электродвигателя с фазным ротором пусковые устройства содержат ключ управления.

Устройства имеют защиты от:

  • потери напряжения оперативной цепи 220 В частотой тока 50 Гц;
  • затянувшегося пуска;
  • превышения времени включения отдельных ступеней пускового резистора;
  • перенапряжений в цепи ротора;
  • короткого замыкания в диодном выпрямителе.

Устройства обеспечивают сигнализацию с выводом информации на дверь шкафа: о включении ступеней пускового резистора и контактора, о наличии напряжения оперативной цепи 220 В частотой тока 50 Гц, о состоянии высоковольтного выключателя электродвигателя, о включении защиты и с выводом на клеммную колодку: о включении реле защиты, о наличии оперативного напряжения, о включении контактора. Устройства обеспечивают контроль тока статора электродвигателя и управление включением электродвигателя непосредственно со шкафа устройства или дистанционно (в режиме разрешения). Устройства содержат схему опробования пусковой схемы при отключенной статорной цепи двигателя.

В комплект поставки входят: устройство; комплект запасных частей согласно ведомости ЗИП; техническое описание и инструкция по эксплуатации; паспорт.

Ротор асинхронного двигателя: устройство короткозамкнутого и фазного ротора

Внушительная мощность асинхронного электродвигателя, трансформирующего электричество в энергию вращения, создается не за счет каких-либо механических составляющих: для такого мощного вращения в его «начинке» используются только электромагниты.

Ротор асинхронного двигателя: конструкция

Ротор – вращающийся внутри статора (неподвижного компонента) элемент электродвигателя, вал которого соединен с деталями рабочих агрегатов, например, пил, турбин и помп. Шихтованный сердечник выполняется из отдельных пластин электротехнической стали с полузакрытыми или открытыми пазами.

Массивный ротор представляет собой цельный стальной цилиндр, помещенный внутрь статора, с напресованным на его поверхность сердечником.

Бесконтактная, не соединенная ни с какой внешней электрической цепью обмотка ротора, создает вращательный момент и бывает двух типов:

  • короткозамкнутая (короткозамкнутый ротор);
  • фазная (фазный ротор).

Короткозамкнутый ротор

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности), играют роль электромагнитов с полюсами, обращенными к статору. Такая конструкция носит название «беличья клетка», данное ей русским электротехником М. О. Доливо-Добровольским.

Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое. Более часто используемый для стержней двигателей средней мощности, легко плавящийся алюминий, отличается малой плотностью и высокой электропроводностью. Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля, стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения.

В двигателях малой мощности пазы сердечника, как правило, выполняют закрытыми: отделяющая ротор от воздушного зазора — стальная пластина позволяет дополнительно закрепить обмотки, но за счет некоторого увеличения их индуктивного сопротивления.

Фазный ротор

Характеризуется практически не отличающейся от обмотки статора трехфазной (в более общем случае — многофазной) уложенной в пазы сердечника обмоткой, концы которой соединены по схеме «звезда». Выводы обмоток присоединены к закрепленным на валу ротора контактным кольцам, к которым при пуске двигателя прижимаются и скользят неподвижные, соединенные с реостатом графитовые или металлографитовые щетки.

Для ограничения возникающих вихревых токов обычно бывает достаточно нанесенной на поверхность обмоток оксидной пленки, вместо изолирующих лаков.

Добавленный в цепь обмотки ротора трехфазный пусковой или регулировочный резистор, позволяет изменять активное сопротивление роторной цепи, способствуя уменьшению больших пусковых токов. Могут использоваться реостаты:

  • металлические проволочные или ступенчатые – с ручным или автоматическим переключением с одной ступени сопротивления на другую;
  • жидкостные, сопротивление которых регулируется глубиной погружения в электролит электродов.

Для увеличения долговечности щеток, некоторые модели фазных роторов оборудуются специальным короткозамкнутым механизмом, поднимающим после пуска двигателя щетки и замыкающим кольца.

Асинхронные двигатели с фазным ротором характеризуются более сложной конструкцией, чем с короткозамкнутым, но, в то же время, более оптимальными пусковыми и регулировочными характеристиками.

Принцип работы

Электромагниты статора расположены близко к стержням ротора и передают на них электричество для его вращения. Индуцированное в роторе магнитное поле будет следовать за магнитным полем статора, осуществляя, при этом, механическое вращение роторного вала и связанных с ним агрегатов. При этом, созданная катушками статора электромагнитная индукция, выталкивает ток на стержнях строго от себя. Значение тока в стержнях изменяется со временем.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector