177 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема привода эп1 для инкубатора

Схема и конструкция заводского инкубатора «Идеальная наседка»

Внешний вид заводского инкубатора «Идеальная наседка»

Вместе с инкубатором прилагается электронный терморегулятор с электрической схемой.

Схема электрическая принципиальная инкубатора «Идеальная наседка»

С1 — Конденсатор REC SR 50В-4,7 мкФ (К50-35)

С2 — Конденсатор REC SR 16В-100 мкФ (К50-35)

DA1 — Микросхема T2117-3AS (импортная)

HL1 — Светодиод АЛ307КМ

VD1 — Диод 1N4007 (КД226Д)

VS1 — Симистор 2N6073A (импортный)

R4 — Резистор С2-23-0,125 — 18 кОМ

R5 — Резистор С2-23-0,125 — 200 кОМ

R6 — Резистор С2-23-0,125 — 51 кОМ

R7 — Резистор С2-23-0,125 — 300 ОМ

R8 — Резистор С2-23-0,5 — 680 кОМ

R9 — Резистор С2-23-2 — 20 кОМ

При повторении конструкции, для корпуса самодельного инкубатора хорошо подойдёт пенопластовая коробка из-под импортной, мороженой рыбы (взять можно у продавцов рыбы на рынке).

P.S. Можно сделать инкубатор больших размеров из старого холодильника.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

Какой телевизор лучше?

Телевизоры, как и вся бытовая техника постоянно усовершенствуется, появляются технические новинки, за которыми не угнаться. Если вы свой телевизор покупали лет пять назад, то уже можно сказать, что вы отстали от жизни. Ведь современный телевизор действительно обладает принципиально иными качествами во многих отношениях.

В статье, ниже давайте обсудим, каким требованиям должен отвечать современный телевизор.

Мельница по чертежам и схемам своими руками

Украшением вашего сада или дачного участка может стать красивая декоративная мельница. Сегодня мы рассмотрим, как можно изготовить новую или восстановить старую декоративную мельницу своими руками. А также возможные варианты декоративных мельниц для сада.

Ранее были опубликованы две статьи: Солнечные батареи своими руками (ЧАСТЬ 1) и (ЧАСТЬ 2). Продолжение предыдущих статей читайте ниже. Подробнее…

Один комментарий на «Схема и конструкция заводского инкубатора «Идеальная наседка»»

Трекбеки

Ваш комментарий

— НАВИГАТОР —

Подписка RSS

Подпишитесь на нашу RSS-ленту, чтобы получать новости сайта. Будь всегда на связи!

Переводчик


Архивы статей



    Мы в соц.сетях:

Коротко о сайте:

Мастер Винтик. Всё своими руками! — это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.

Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму.
Программы, схемы и литература — всё БЕСПЛАТНО!

Если сайт понравился, добавьте в избранное (нажмите Ctrl + D), а также можете подписаться на RSS новости и всегда получать новые статьи по ленте.
Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ!
Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!

Весёлый Карандашик

Доступные решения для домашнего мастера

РЕКЛАМА

Простая электрическая схема для системы поворота яиц в инкубаторе.

Электрическая схема системы переворота яиц в инкубаторе.

Составные элементы предлагаемой электросхемы собраны из самых простых, что ни есть частей и механизмов.

Система автоматического переворота яиц состоит из механической части, связанной шарнирными соединениями с тележкой, на которой располагаются лотки с яйцами, или непосредственно с самими лотками, и электрической части, включающую в себя концевые выключатели(датчики фиксированного положения) и исполнительный блок.

Переключатель режимов электрической схемы поворота яиц в инкубаторе.

Нами использован малый кварцевый будильник китайского производства. В технологическом оборудовании промышленных инкубаторов использовалась система механических часов с концевыми выключателями, срабатывавшими от нажатия регулировочных болтов, установленных на временной шкале вращающегося вместо стрелок диска.

За основу была взята подобная система.

На циферблате кварцевых часов через каждые 90°(15, 30, 45, 60 минут) закреплены контакты, через которые подаётся напряжение на обмотки реле управления. А замыкает контакты — минутная стрелка, на которой с нижней стороны закреплён маленький пружинящий электрический контакт.

Циферблат можно обработать любым способом: приклеить контактные кольца, вплавить горячим паяльником проволоку, разместить фольгированный гетинакс с контактной разметкой, использовать фотоэлементы, герконы — всё на усмотрение конструктора и всё — в зависимости от имеющихся в наличии материалов.

Пружинящий контакт, установленный на минутной стрелке сделан из лужённой медной проволоки, она мягче стальной.

Стрелка пластмассовая и на неё легко вплавить горячим паяльником или приклеить готовый контакт.

Электрическая схема поворотной системы инкубатора собрана по-минимуму и легка в сборке.

Принцип работы электросистемы поворота яиц в инкубаторе.

Контакты управления(SAC1) замыкаются через каждые 15 минут. Часы работают в обычном режиме.

  • При замыкании контакта(1,3) или(2,4) управляемое напряжение поступает на одно из двух реле управления(контакты 1,3 — реле К2; контакты 2,4 — реле К3).
  • В момент подачи напряжения на реле должны быть включены соответствующие концевые выключатели(реле К2 — выключатель SQ1; реле К3 — выключатель SQ2), в противном случае срабатывание реле не произойдёт в установленное время(15 минут). Только через 30 минут.
  • Срабатываемое реле(К2 или К3) замыкает свои контакты и напряжение поступает на реле привода.
  • Реле привода подаёт питание на электродвигатель, который через механическую систему приводит в действие систему поворота яиц в инкубаторе.
  • Световые сигнализаторы указывают на включение соответствующих элементов и могут быть установлены на отдельном табло.

Блок электропривода системы переворота яиц в инкубаторе.

Механизм привода можно использовать любой: детские электроприводные игрушки, блок электродрели, старый механический будильник, механизм электропривода автомобильного дворника, поворотный механизм от бытового тепловентилятора или вентилятора, электромагнитное тяговое реле с вакуумным регулятором, использовать готовый от автоматического управления стиральной машинки или изготовить самостоятельно винтовой с минимальными деталями(кстати, очень простой и удобный). Зависит от конструкции и размеров самого инкубатора.

Если использовать редуктор с кривошипным механизмом, то главный вал должен иметь диаметр больше длины хода поворотной рамки(при горизонтальном положении рамки на лотке). При винтовом механизме длины рабочей резьбовой части соответствовать расстоянию хода системы поворота яиц.

Электропривод системы поворота яиц в инкубаторе винтового механизма управляется электродвигателем с реверсивным включением, то есть двигатель включается попеременно в левую и в правую сторону вращения.

Описание работы электросхемы поворотной системы инкубатора.

Запитанные элементом питания кварцевые часы-будильник работают в обычном режиме. Через равные промежутки времени, а именно: через каждые пятнадцать минут текущего времени минутная стрелка, проходя над закреплёнными на циферблате контактами, подводит к ним пружинящий контакт и через них замыкает электрическую цепь. Таким образом, формируется управляющий сигнал для реле управления(К2 или К3).

С обратной стороны реле(К2 или К3) электрический сигнал поступает на концевой выключатель(SQ1 или SQ2).

На подвижном механизме поворотной системы имеется шток, который перемещаясь вместе с подвижной частью системы, надавливает на клавишу концевого выключателя, находясь в одном из крайних положений и тем самым обрывает цепь: переключатель режимов-реле управления-концевой выключатель.

Проще говоря, получается так: от переключателя режимов(доработанный будильник) при его замкнутых контактах напряжение поступает на реле управления и далее на концевой выключатель. Если концевой выключатель будет находится в замкнутом состоянии, то реле управления включится и замкнёт своими контактами цепь управления реле привода, которое подаст питание на электропривод системы поворота. Посмотреть в новом окне.

Система запустится и переведёт механизм в одно из двух положений, осуществляемых при перевороте яиц в инкубаторе. Фиксирование крайнего положения будет производится выключением концевого выключателя надавливанием перемещаемого с рамкой штока на клавишу выключателя.

Схема с реверсивным подключением электродвигателя немного отличается добавлением второго реле привода с двумя управляемыми(коммутируемыми) контактами.

Любители электроники могут применить цифровой таймер с самозапуском после цикла или реле времени, применявшееся когда-то фотолюбителями. Вариантов много. Можно купить готовый электронный блок. Всё — от возможностей.

Список некоторых деталей.

  1. SAC1 — переключатель режимов.
  2. К3 и К4 — реле управления типа РЭС-9(10,15) или подобные.
  3. К1 и К2 — реле привода с током коммутации соответственно по току нагрузки.
  4. HV — световые индикаторы.
  5. SQ1 и SQ2 — концевые выключатели. Можно использовать микропереключатели (МК) от старых кассетных магнитофонов.

Самодельный инкубатор с автоматическим наклоном лотков

Инкубатор был сделан для выведения домашней птицы, такой как перепела, куры, утки, гуси, индейки. Такое разнообразие стало возможно благодаря микроконтроллерной автоматике.

Материалы для корпуса:
— лист ЛДСП или старые мебельные щиты (как у меня)
— доска полового ламината
— лист алюминиевый с перфорацией
— два мебельных навеса
— саморезы

Инструменты:
— Циркулярная пила
— Дрель, сверла, сверло мебельное (для навесов)
— отвертка

Материалы для автоматики:
— монтажная плата, паяльник, радиодетали
— трансформатор на 220->12в
— электропривод DAN2N
— две лампы накаливания по 40Вт
— вентилятор на 12в компьютерный, средних размеров

Пункт 1. Изготовление корпуса.
При помощи циркулярной пилы из листа ЛДСП выпиливаем заготовки в соответствии с размерами на Рис. 1.


Просверливаем ряды вентиляционных отверстий Д=5 мм. спереди и сзади, по верху и по низу корпуса.

В результате получился полностью готовый корпус для инкубатора, дополнительно утеплять его не надо, электроника прекрасно справляется с обогревом ящика всего двумя лампочками.

Пункт 2. Лоток для яиц.

Главная деталь лотка, это основание, алюминиевый лист с частыми отверстиями для беспрепятственной циркуляции нагретого воздуха. Если нет аналогичного материала, то можно сделать дно из любого листового материала достаточной жесткости и насверлить в нем много отверстий Д=10 мм.

Боковины я сделал из ламината, в котором делаются пропилы до середины с шагом 50 мм, в них из садового шпагата заплетается сетка удержания яиц, по окончанию шпагат в пропилах проклеивается клеем Титан. Получается ячейка 50х50 мм, по размеру больших утиных яиц, чтобы не делать много разных лотков для разной птицы, поэтому куриные яйца в некоторых местах приходится немного распирать брусками из пенопласта. Вместимость такого лотка 50 яиц. Гусиные яйца закладываются в шахматном порядке, сетка из шпагата хорошо обжимает закладку.

Для перепелов изготавливается отдельный аналогичный этому лоток, но с шагом ячейки 30х30 мм, вместимость которого 150 яиц.

На этом вместительность инкубатора не заканчивается, потому, что есть еще второй ярус, второй лоток который при необходимости устанавливается сверху первого лотка.

На фото: Крепление (V) для верхнего лотка и металлическая скоба крепления к оси наклонного механизма.

Это (V) образное крепление расположено на обоих концах лотка и оно нужно только если планируется второй лоток. У верхнего дополнительного лотка такое же крепление только направлено вниз и входит клином в «ласточкин хвост» нижнего лотка.

Также на фото видна металлическая проушина для крепления лотка на флажок поворотного механизма.

На фото: Флажок поворотного механизма.

На фото: Противоположная сторона лотка.

Здесь видно (V) крепление и отверстие опорной оси лотка.

На фото: Опорная ось лотка.


Пункт 3. Устройство для наклона лотка с яйцами.
Для поворота оси с флажком, который в свою очередь наклоняет лоток с яйцами на 45 градусов в одну и другую сторону, я применил электропривод DAN2N, применяемый для труб вентиляции.

На фото: Стандартное место применения DAN2N, открытие и закрытие задвижки трубы.

Для управления сменой положения на управляющем контакте, подойдет любой таймер, который будет замыкать и размыкать контакт через заданный промежуток времени. Для этой цели у меня нашелся Французский таймер с регулировкой от доли секунды до нескольких суток. Но все эти функции уже есть в нашем микроконтроллерном блоке управления, поэтому для поворота лотка нам достаточно использовать любой маленький моторчик с редуктором, а управление им возьмет на себя БУ.

Пункт 4. Блок управления.
Блок управления или сердце инкубатора, от которого зависит получите вы цыплят или нет.

С выходом в свет популярного микроконтроллера Atmel стало появляться множество интересных проектов, в том числе простых и очень надежных термостатов. Так мартовский проект из журнала Радио 2010 года перерос в полноценный законченный модуль управления инкубатором со всем возможным функционалом. А это: диапазон регулировок 35.0С — 44.5С., индикация и сигнализация в случае аварийной ситуации, регулировка температуры сложным алгоритмом с эффектом самообучения, автоматический поворот лотка, регулировка влажности.

При нагреве тэна (в нашем случае ламп накаливания) алгоритм подбирает мощность нагрева, благодаря чему температура выходит в баланс и может находиться постоянной с точностью 0,1гр.

Аварийный режим выручит, если повредились выходные симисторы, управление переходит на аналоговое реле и до момента устранения поломки поддержит температуру в допустимом диапазоне.

Для управления поворотом лотков, контроллер предоставляет диапазон регулировок до десяти часов, поддерживает наличие концевых выключателей наклона, так и без них, по установке времени включения мотора для прохождения нужного расстояния.

Автоматическая регулировка влажности управляется от второго электронного влажного термометра, психрометрический метод расчета и когда надо, включится нагрузка — распылитель или ультразвуковой генератор тумана с вентилятором.

Все манипуляции регулировок производятся тремя кнопками.

В схеме применяются температурные датчики DS18B20, погрешность которых с точностью в 0.1 градус можно выставлять из меню БУ.

Схема блока управления инкубатором на МК Atmega 8.





В зависимости от применяемых выходных силовых ключей, можно применять разные варианты выходных схем с разными точками подключения и вариантов прошивок.

* Если для управления тиристорамисимисторами применяются импульсные трансформаторы МИТ-4, 12 с точкой подключения (А), то применяется эта схема.

*Управление оптопарами МОС.

Прошивка — Фазоимпульсная , подключение в точке (А), применяются MOC3021, MOC3022, MOC3023 (без Zero-Cross)
Прошивка — Низкочастотной шим, подключение в точке (В), MOC3041, MOC3042, MOC3043, MOC3061, MOC3062, MOC3063 (с Zero-Cross)



Скачать прошивки можно здесь inkubator.rar [178.56 Kb] (скачиваний: 545)

Пункт 6. Нагреватель и вентилятор циркуляции воздуха.

На выход силовых ключей подключается две лампы накаливания по 40 Вт. каждая, далее параллельно лампам подключена схема питания вентилятора, который начинает вращаться вместе с включением ламп.


Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Блок поворота для инкубатора

Вы здесь

Страницы

Вопросы задавать можно только после регистрации. Войдите или зарегистрируйтесь, пожалуйста.

Данный материал прислал нам автор — наш форумчанин Serge из г. Кишинёва, за что ему большое спасибо!

С. Тинкован, г. Кишинев, Молдова

АННОТАЦИЯ

В конструкции большинства бытовых и фермерских инкубаторах вопрос поворота яиц проработан недостаточно или их электронная часть содержит избыточное количество деталей, которые оказывают влияние на стабильность и надежность работы системы поворота. Предлагаемый блок поворота позволит устранить эти недостатки, повысить стабильность работы и доработать имеющиеся инкубаторы начиная от бытовых и заканчивая промышленными, применяя всего лишь две микросхемы с минимальной обвязкой. В качестве дополнительной цели статьи является приведение примеров реализации обыденных аппаратных функций с помощью программ и более эффективное использование возможностей микроконтроллеров в роли устройства поворота для инкубатора.

ВВЕДЕНИЕ

Блок управления инкубатором предназначен для задания времени и обеспечения поворота лотков с яйцами в бытовых, фермерских и промышленных инкубаторах, у которых блок управления либо отсуствует или нуждается в доработке/модернизации. Другим немаловажным фактором является стабильность временных характеристик периода поворота, во многих публикациях временной параметр зависит от стабильности задающего RC генератора, частота которого делится многоразрядным счетчиком до интервала времени равного 1 час, это величина рекомендованная инструкцией по инкубации. В зависимости от изменения окружающей температуры погрешность временного интервала может достигнуть величины до 10 минут, если не принять мер по устранению температурной нестабильности. Помимо упомянутого, дополнительной задачей является сокращение числа корпусов микросхем, габаритов монтажа и повышение повторяемости конструкции. Учитывая специфику технологии инкубации необходимо обеспечить возможность перевода блока поворота на ручной режим при загрузке инкубатора или отключить в период наклева и вывода (последние 2-3 инкубации). Исходя из выше сказанного, изначально было принято решение выполнить блок поворота на микроконтроллере с учетом специфики решаемой задачи. В качестве микроконтроллера применен AT89C2051, который является урезанной версией классических контроллеров семейства MCS-51, который удачно подходит для реализации данного блока поворота и решает возложенные на него задачи.

Основные технические характеристики блока поворота:
• Период поворота 1 час +/- 0,2 сек.
• Контроль положения лотков по состоянию концевых датчиков
• Обслуживание выходного устройства электродвигатель или магнитный пускатель
• Контроль горизонтального положения лотков ручной
• Режим работы автоматический и ручной
• Напряжение питания +12В или +24В

1. Описание схемы блока поворота
Принимая во внимание структуру большинства устройств поворота (рис. 1.) в [1…5], они как правило состоят из задающего генератора, счетчика делителя, усилителя, реле и цепей контроля положения лотков (как правило это концевые датчики на разрыв или замыкание). Если эти функциональные узлы выполнить на обычных цифровых микросхемах, то вся конструкция будет содержать от 4 до 7 корпусов микросхем плюс вспомогательные детали для их нормальной работы, особенно это наглядно видно в [1…4] и меньшей мере в [5], там всего лишь 2 корпуса на считая стабилизатор напряжения. Если применить микроконтроллер, то большинство функциональных блоков можно выполнить программно и сама схема сокращается до одного корпуса, не считая микросхемы стабилизатора напряжения и вспомогательных деталей.

Рис. 1. Структурная схема блока поворота.

На первый взгляд кажется, что довольно роскошно применить микроконтроллер для такой задачи, но учитывая гибкость за счет замены программы и более стабильные временные характеристики благодаря свойствам кварцевого резонатора, которые намного лучше чем RC генераторов на транзисторах или микросхемах. В дополнение ко всему, если нет под рукой кварцевого резонатора с нужной частотой, то ситуацию легко можно исправить простой коррекцией коэффициента деления в программе управления. Сама схема содержит необходимый минимум деталей, но в качестве своеобразного избытка оставлена индикация работы блока, которая сигнализирует о работе всего блока поворота (рис. 2.). Включение цепей начального сброса и кварцевого резонатора для микроконтроллера стандартное, согласно рекомендациям производителя.

Исполнительные устройства (светодиод и реле) тоже особенностей не имеют и только по стабилизатору источника питания есть примечание, для более универсального исполнения он выполнен на микросхеме КР142ЕН12А, на вход которой можно подать напряжение до 45В (согласно справочным данным изготовителя), так как в дорабатываемом устройстве источник питания может выдать +12В (к примеру это бытовой инкубатор) или +24В, если дорабатывается блок поворота у промышленного инкубатора. Это необходимо для обеспечения универсальности его применения, если заведомо будет применяться напряжение +12В, то стабилизатор напряжения можно заменить на КР142ЕН5А в стандартном включении и резисторы R5…R7 можно удалить из схемы, при этом придется внести изменения в рисунок печатной платы.

Рис. 2. Электрическая принципиальная схема блока поворота.

Если в качестве исполнительного устройства применен маломощный двигатель с редуктором типа РД-09 или СД-54, то его схема включения приведена на рис. 3, в случае применения трехфазного двигателя для поворота в промышленном инкубаторе подключение производится согласно рис. 4.

Рис. 3. Электрическая принципиальная схема подключения маломощного двигателя с редуктором.


Рис. 4. Электрическая принципиальная схема подключения 3-х фазного двигателя.

Расположение концевых датчиков для бытовых инкубаторов типа ИПХ-10И [6] можно заимствовать из [5], аналогичное решение можно найти и у лабораторных инкубаторов ИЛБ-0,5 [7]. Для промышленных инкубаторов типа ИУП-45 расположение концевых датчиков приведена на рис. 5.

Рис. 5. Расположение концевых датчиков у промышленного инкубатора.

Если блок управления приспосабливается для инкубаторов серии ИНКИ, то можно использовать его родные концевые датчики, по алгоритму работы они совпадают с рассмотренными выше схемами.
Учитывая тот факт, что загрузка инкубатора всегда выполняется под контролем оператора, в схеме исключена автоматическая установка лотков в горизонтальное положение, что для данной ситуации допустима.

2. Программа управления
Для управления всей аппаратной части в память программ микроконтроллера записывается программа, которая и определяет режим работы всего блока поворота. В виду малого объема памяти программ микроконтроллера управляющая программа написана на языке Assembler-51, которая дает самый компактный исполняемый код после компиляции. По структуре программа условно поделена на две части:
— Основная программа;
— Подпрограмма обслуживания прерывания по таймеру.

В свою очередь основная программа состоит из процедуры инициализации и программы опроса флажков состояния (программный поллинг или опрос). В рамках инициализации предусмотрена запись начальных значений в служебные регистры SFR и портов ввода/вывода (В/В) микроконтроллера. В состав программы опроса включена процедура формирования временных интервалов путем накопления интервалов времени длительностью 50 мс в трех регистрах общего назначения R2, R3 и R4 и в зависимости от их содержимого выполняет управление состояния выводов В/В P1, где P1.7 управляет светодиодом HL1 и P1.6 – переброской контактов реле K1.

Подпрограмма обслуживания прерывания по таймеру T/C0 отсчитывает интервалы времени в 50 мс и по его истечению устанавливает в состояние лог. «1» пользовательский флажок с адресом 00h (этому флажку соответствует бит 0 ячейки внутренней памяти с адресом 20h). Сам таймер-счетчик T/C0 при инициализации запрограммирован в режим 1 и при каждом входе в прерывание загружает в регистры TL0 и TH0 значения констант для следующего интервала и запускает таймер-счетчик T/C0 по новой.

Далее основная программа циклически опрашивает состояние этого флажка и в случае его активации выполняет подпрограмму формирования интервала поворота, обнуляет содержимое флажка, где регистрам R2, R3 и R4 отведена следующая роль. В регистре R2 ведется счёт до значения 14h (число 20 в десятичном исчислении) и таким образом получаем интервал в 1 секунду, при достижении этой величины выполняется инверсия бита порта P1.7 (он управляет светодиодом HL1 через усилитель на транзисторе VT1) и содержимое R2 обнуляется, далее совершается переход на инкрементирование и контроль содержимого регистра R3, при значении R2

Мигание светодиода HL1 с периодом 2 секунды введено в программу с целью сигнализации нормальной работы блока поворота, если он погашен или горит постоянно, то это указывает на сбой в программе или неисправность блока. При возникновении сбоя программы достаточно на несколько секунд отключить питание и вновь включить обратно, после этого отсчет времени пойдет с нуля. В виду небольшого объема откомпилированной программы (исполняемый код занимает всего лишь 119 байт) можно привести её текст в HEX формате:
:03000000020030CB
:03000B0002006A86
:1000300075903F75870075891175881075984075A2
:10004000B81F75A8827A007B007C00003000FCC2DB
:10005000000ABA14F67A00B2970BBB3CEE7B000C98
:10006000BC3CE87C00B29602004BC28C758AB87525
:070070008C3CD28CD200325F
:00000001FF

Если возникает необходимость изменить значение периода поворота, то перед программированием контроллера в двоичном файле прошивки по адресу 61h можно изменить содержимое ячейки от 1 до 255 минут, что позволяет задать период поворота чуть больше 4-х часов. При применении кварцевого резонатора с частотой отличной от 12 МГц величину константы перезагрузки для таймера пересчитать по формуле
Kdiv=((1/(FBQ/12))•(65536+Ts/p)-Tdel)/( 1/(FBQ/12)) (1)
где: FBQ частота резонатора в Гц,
Ts/p длина подпрограммы прерывания, в данной версии её длина 8 циклов,
Tdel единица для подсчета задержек времени, в данной версии она составляет 0,05 сек.
после вычислений записать в двоичный файл прошивки по адресу 6Eh младший байт Kdiv и по адресу 71h – старший байт константы Kdiv. Например, для кварцевого резонатора с частотой 11,0592 МГц расчетная величина константы перезагрузки будет Kdiv=4C08h.

3. Монтаж и настройка электронной части
Большинство деталей блока поворота собраны на односторонней печатной плате с размерами 68х50 мм (рис. 6). При монтаже печатной платы в обязательном порядке предусмотреть установку микроконтроллера через панельку, это необходимо для удобства ремонта и смены его прошивки.

Рис. 6. Монтаж печатной платы блока поворота.

При соблюдении номиналов деталей и монтаже без ошибок плата должна заработать сразу, только предварительно проверить напряжение на выходе стабилизатора напряжения, ее величина составляет +5В +/-0,25В, при большем расхождении уточняют номинал резистора R7 и/или R5. Если есть в наличии более точные резисторы, то резисторы R5 и R7 можно заменить одним с величиной сопротивления 718 Ом. Для возможности начального сброса микроконтроллера не выключая и включая его питания можно подпаять параллельно конденсатору C1 (см. рис. 2.) кнопку с контактами на замыкание, ее расположить в удобном месте с учетом исключения случайного нажатия.

4. Детали и допустимая замена
В блоке поворота стабилизатор напряжения КР142ЕН12А можно заменить на LM317, выпрямительный мост RС207 можно заменить аналогичным по параметрам или 4-мя выпрямительными диодами, например типа N4007.
Светодиоды можно взять типа АЛ307 или аналогичные отечественного или зарубежного производства с рабочим прямым током 10-15 мА с красным цветом свечения.

Реле К1 может быть типа HJR-3FF-S-Z с рабочим напряжением обмотки 12В или 24В в зависимости от напряжения вторичной обмотки примененного понижающего трансформатора (

20В). В качестве переключателя S1…S3 можно применить любые малогабаритные выключатели с соответствующими группами коммутации рассчитанные под сеть переменного тока

220В. Для концевых датчиков положения SQ1, SQ2 можно применить любые выключатели с группой контактов на размыкание выдерживающий переменное напряжение

Силовой трансформатор можно выбрать любой, где вторичная обмотка обеспечивает нужное выходное напряжение и ток 150…200 мА и содержит в первичной обмотке отвод на 127В для двигателя с редуктором РД-09. Для большего удобства трансформатор предпочтительно выбрать из серии ТПП, например ТПП247-220/127-50, он удовлетворяет упомянутым требованиям.
Постоянные резисторы типа МЛТ, ОМЛТ, С2-33 или аналогичные с мощностью рассеивания 0,125 или 0,25 вт, электролитические конденсаторы К50-35, К50-45 или аналогичные импортного производства. Керамические конденсаторы можно взять любого типа отечественного или зарубежного производства.

И в заключение стоит отметить, что данную схему можно перевести на другой тип контроллера, например это может быть котроллер типа Tiny2313, который по цоколевке полностью совпадает с AT89C2051 не затрагивая саму печатную плату. Изменения в таком случае затронут только программу управления для Tiny2313. Помимо замены микроконтроллера в схему и программу можно ввести дополнительный сервис, например в виде звуковой сигнализации отсуствия поворота, автоматический перевод в горизонтальное положение, индикацию остаточного времени до переворота, возможность задания времени поворота и анализ аварийных ситуаций в силовой части, где все это предусмотрено в последующей версии для публикации блока поворота для промышленного инкубатора.

ЛИТЕРАТУРА

1. Григорьев А. Блок управления кинематикой инкубатора, «Радио» 1999, №10, стр. 32-33.
2. Тишкунов А. Терморегулятор для инкубатора — 2, «Схемотехника» 2001, №8 стр. 2-5
3. Заец Н. Устройство управления двигателем инкубатора. «Радио» 2002, №5, стр. 28-29.
4. Маньковский А. Автомат переворачивания лотков с яйцами в инкубаторе. «Радио» 2006, №1, стр. 41-42.
5. Тинкован С. Мини-инкубатор А50Б, «Радiоаматор» 2010, №11, стр. 29-33.
6. Инкубатор ИПХ-10И. Руководство по эксплуатации.
7. Инкубатор ИЛБ-0,5. Руководство по эксплуатации.

Знакомьтесь – инкубатор «Идеальная наседка»

В многочисленных отзывах птицеводов инкубатор «Идеальная наседка» встречается часто. Одни находят в нем множество недостатков, другие описывают достоинства. Однако модели пользуются спросом, рассмотрим конструкцию подробнее.

Отличие «Идеальной наседки» от подобных моделей

Для бытового использования изготовители предлагают недорогие аппараты в толстом пенопластовом корпусе. Они дешевле и легче, чем аппараты с многослойным корпусом из утеплителя, пластика или металла. Инкубатор Идеальная наседка относится к классу бюджетных приборов.

Первое отличие корпуса – на днище с внутренней стороны выполнено 15 углублений, напоминающих блюдца. Они предназначены для заполнения кипяченой водой, создания влажности в инкубационной камере.

Имеется 3 варианта инкубаторов под разное количество яиц, их габариты 59*54*32 см одинаковы. Но 90 яиц переворачивают вручную, а 63 можно механическим и автоматическим способом. Самым недорогим инкубатором Идеальная наседка является аппарат, рассчитанный на 35 яиц с ручным переворотом.

Модель отличает расположение нагревателей на верхней крышке. Большая площадь нагревания обеспечивает равномерный прогрев яиц в каждом уголке камеры. При этом в верхнюю крышку вмонтирован прозрачный смотровой лючок.

Ещё одно отличие инкубаторов бытовых Идеальная наседка – в случае отсутствия сетевого питания на 220 В, дополнительное подключение аккумулятора не предусмотрено. Придется спасать эмбрионы, обкладывая коробку альтернативными теплоносителями – фляжками с водой, подушками.

Процесс инкубации нужно проконтролировать на 7 и 11 день. Если на 11 -13 день яйцо полностью потемнело, процесс идет нормально. Нежизнеспособные яйца следует удалять из камеры, в биологической массе разводятся бактерии, «болтун» может взорваться.

В комплекте всех аппаратов имеется датчик регулирования температуры, цифровой или аналоговый и термометр. Температура задается регулятором. Контрольные приборы размещены на верхней крышке в доступном месте. Прибор имеет встроенную защиту от пробоя электричества. Приборы различных серий отличаются оснащением и количеством яиц в закладке:

  • ИБ1НБ – 35 шт., ручной переворот;
  • ИБ2НБ – 63 шт., механический переворот;
  • ИБ2НБ – 90 шт., ручной переворот.

С добавлением специального блока ЭП1 инкубатор ИБ2НБ становится автоматическим, ИБ3НБ, переворот яиц происходит через 4 часа.

Общее руководство по эксплуатации инкубаторов

Инструкция на инкубатор Идеальная наседка общая для всех типов аппаратов. В соответствующих разделах уточняются правила обращения с разными моделями:

  1. Выбор места для установки инкубатора влияет на качество выводка. Если помещение душное, то вентиляционные отверстия в корпусе нужно расширить.
  2. Особое внимание следует уделить безопасности электроприбора. Особо обращать внимание на целостность изоляции и контактов оборудования.
  3. Подробное описание инкубатора, его функциональных узлов и их рабочие характеристики.
  4. Поэтапный порядок подготовки прибора к приему яиц. Курсивом выделены важные моменты, на которые следует обратить внимание. Именно в этом разделе приводится подробная электрическая схема инкубатора Наседка для всех модификаций с расшифровкой параметров резисторов, конденсаторов и транзисторов.
  5. Очень важным моментом является требование к качеству яиц, их маркировке и правильной укладке. Производитель гарантирует 100% выведение только отобранных яиц с помощью овесола и срока их хранения не более 10 дней в соостветствующих условиях.
  6. Процесс вывода в инкубаторе Идеальная наседка должен находиться под контролем птицевода. Описывается, как правильно перевернуть яйца, вести контроль температуры и последствия неправильной инкубации.
  7. Как очистить прибор после проведения процесса, где его хранить и где ремонтировать.

Подробная инструкция поможет даже новичку провести процесс правильно.

При перегреве обсохшие цыплята грязные, пуповина желтая. То же происходит, если в камере не хватало влажности. Если возникал недогрев, пупок не зажил, пуповина зеленая. Во всех случаях нарушения режима птенцы вялые, отказываются клевать корм, падают.

Особенности инкубатора с механическим переворотом яиц

Для инкубаторов Идеальная наседка ИБ2НБ производитель предусмотрел устройство для одновременного переворота 63 яиц плавным движением рычага устройства. Но при этом процесс необходимо контролировать в смотровое окно. Уложенные на решетку яйца должны иметь заметную маркировку, нанесенную на поверхность с одной стороны. При переворачивании метки должны быть расположены в одинаковом направлении. Если так не вышло, необходимо открыть крышку и быстро поправить выводочный материал.

Модель инкубатора «Наседка» механический вариант оборудована электронным регулятором температуры и термодатчиком. Подстроить режим следует поворотом ручки терморегулятора. Подливать воду в углубления следует через решетку. Сетевое питание при этом отключают.

Для равномерного прогрева раз в сутки яйца следует плавно перемещать от периферии к центру. В последнюю неделю яйца не перемещать, не переворачивать, удалить из камеры устройство.

Автоматизация процесса инкубации

Гораздо удобнее вести вывод цыплят, полагаясь на электронный контроль автоматизированного процесса. Стоит приобрести дополнительно к существующему в механической модели электронный блок ЭП-1 и собрать установку, согласно руководству по подготовке электропривода, и получим автоматический инкубатор Идеальная наседка. Настроив программу, получим соблюдение температурного и влажностного режима с минимальной погрешностью. Но контролировать процесс визуально и с помощью овоскопа нужно.

В последние дни инкубации при выдержанных параметрах, можно заметить активность в камере – слышно слабое попискивание, на скорлупках появляются трещинки. В это время необходимо обеспечить полный покой в помещении.

Инкубатор «Идеальная наседка» не лучше и не хуже похожих приборов этой ценовой категории.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector